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Signals on the Sphere

In the surface of a unit sphere is defined as 𝕊2.

 Orthonormal basis functions called spherical harmonics

𝑌𝑙
𝑚 𝜃, 𝜙 =

2𝑙 + 1

4𝜋

𝑙 − 𝑚 !

𝑙 + 𝑚 !
𝑃𝑙
𝑚 𝑐𝑜𝑠𝜃 𝑒𝑖𝑚𝜙.

Any signal 𝑓 ∈ 𝐿2 𝕊2 can be expanded as

𝑓 ෝ𝒙 =

𝑙,𝑚

∞

𝑓 𝑙
𝑚𝑌𝑛

𝑚 ෝ𝒙

where 

𝑓 𝑙
𝑚 = 𝑓, 𝑌𝑙

𝑚
𝕊2

3



Signal Rotation on the Sphere

 Rotation matrices

𝐑 ≡ 𝐑𝑧 𝜑 𝐑𝑦 𝜗 𝐑𝑧 𝜔

where 𝐑𝑦 𝜗 rotate by angles ϑ around y-axis.

 Rotation operator of Euler angles ρ = 𝜑, 𝜗, 𝜔 is

𝒟𝜌 ≡ 𝒟 𝜑, 𝜗, 𝜔

 Signal Rotation on the Sphere

𝒟𝜌𝑓 ෝ𝒙 = 𝑓 𝐑−1ෝ𝒙 .
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Signal Rotation on the Sphere

 Signal rotation on the sphere

𝒟𝜌𝑓 ෝ𝒙 = 𝑓 𝐑−1ෝ𝒙 =

𝑙,𝑚

∞



𝑚′=−𝑙

𝑙

𝒟𝑚,𝑚′
𝑙 𝜌 𝑓 𝑙

𝑚′

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠

𝑌𝑙
𝑚 ෝ𝒙

where 𝒟𝑚,𝑚′
𝑙 is the Wigner D-function.

𝒟𝑚,𝑚′
𝑙 𝜌 = 𝑒−𝑖𝑚𝜑𝑑𝑚,𝑚′

𝑙 𝜗 𝑒−𝑖𝑚
′𝜔

and 𝑑𝑚,𝑚′
𝑙 is the Wigner's (small) d-function.
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Signals on the 𝕊𝕆 3 Rotation Group

All rotations by ρ = 𝜑, 𝜗, 𝜔 is called the Special

𝑑𝑒𝑡=1

Orthogonal group

closure,
inverse

𝕊𝕆 3 .

Wigner D-functions form the basis functions on the 𝕊𝕆 3 , since the orthogonality

𝒟𝑚,𝑚′
𝑙 , 𝒟

𝑚,𝑚′
𝑝

𝕊𝕆 3
=

8𝜋2

2𝑙 + 1
𝛿𝑙,𝑝𝛿𝑚,𝑞𝛿𝑚′,𝑞′ .

Any signal 𝑣 ∈ 𝐿2 𝕊𝕆 3 can be expanded as

𝑣 𝜌 =

𝑙,𝑚

∞

𝑣 𝑚,𝑚′
𝑙 𝒟𝑚,𝑚′

𝑙 𝜌

where 

𝑣 𝑚,𝑚′
𝑙 =

8𝜋2

2𝑙 + 1
𝑣, 𝒟𝑚,𝑚′

𝑙

𝕊𝕆 3
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Spatial-Spectral Concentration on the 

Sphere

A bandlimited 𝑙 = 𝐿𝑔 signal 𝑔 in 𝑅 ⊂ 𝕊2.

 Spatial energy concentration

𝜆 =
𝑔 𝑅

2

𝑔 𝕊2
2 =

σ
𝑙,𝑚

𝐿𝑔−1σ𝑝,𝑞
𝐿𝑔−1

𝑔 𝑙
𝑚 𝑔 𝑝

𝑞
𝐾𝑙𝑚,𝑝𝑞

σ
𝑙,𝑚

𝐿𝑔−1
𝑔 𝑙

𝑚 2 =
gHKg

gHg

where 

𝐾𝑙𝑚,𝑝𝑞 = න
𝑅

𝑌𝑙
𝑚 ෝ𝒙 𝑌𝑝

𝑞 ෝ𝒙 𝑑𝑠

is called spherical harmonics double product.

K is Hermitian and positive definite, the eigenvalues 𝜆 are real and eigenvectors

g are orthogonal.
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Slepian functions

 Eigenvalues 

1 > 𝜆1 > 𝜆2 > ⋯ > 𝜆𝐿𝑔2 > 0.

 Slepian functions (eigenvectors)

𝑔1 ෝ𝒙 ,𝑔2 ෝ𝒙 , ⋯ ,𝑔𝐿𝑔2 ෝ𝒙 .

 Any signal 𝑓 ∈ 𝐵𝐿𝐿𝑔 can be expanded as

𝑓 ෝ𝒙 = 

𝛼=1

𝐿𝑔
2

𝑓 𝛼𝑔𝛼 ෝ𝒙

where 

𝑓 𝛼 = ℎ, 𝑔𝛼 𝕊2 = g𝛼
Hh.
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Clustering Behavior of the Eigenvalues 

The corresponding eigenvalues 1 > 𝜆1 > 𝜆2 > ⋯ > 𝜆𝐿𝑔2 > 0.

Most of eigenvalues are either nearly 1 or nearly 0.

 Spherical Shannon number (sum of eigenvalues)

𝑁𝑅 ≜ 

𝛼=1

𝐿𝑔
2

𝜆𝛼 = 𝑡𝑟𝑎𝑐𝑒 K =
𝐴𝑅
4𝜋

𝐿𝑔
2

where 𝐴𝑅 ≜ 1 𝑅 is the surface area of the spatial region 𝑅.

The first 𝑁𝑅 concentrated Slepian functions form a localized basis set of 

bandlimited signals in the spatial region 𝑅.
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Example: Slepian functions

10

A. Aslam, and Z. Khalid, “Spatial-Slepian Transform on 

the Sphere,” IEEE Trans. Signal Process., vol. 69, pp. 

4474-4485, 2021.



Spatial-Slepian Transform

Well-optimally concentrated Slepian functions 𝑔𝛼 ෝ𝒙 , 𝛼 = 1, 2,⋯ ,𝑁𝑅.

 Spatial-Slepian Transform

𝐹𝑔𝛼 𝜌 ≜ 𝑓,𝒟𝜌𝑔𝛼 𝕊2
= න

𝕊2
𝑓 ෝ𝒙 𝒟𝜌𝑔𝛼 ෝ𝒙 𝑑𝑠 ෝ𝒙

= 

𝑙,𝑚

𝑚𝑖𝑛 𝐿𝑓−1,𝐿𝑔−1

𝑓 𝑙
𝑚 𝑔𝛼 𝑙

𝑚′
𝒟𝑚,𝑚′
𝑙 𝜌
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Inverse Spatial-Slepian Transform

 Inverse Spatial-Slepian Transform 

𝐹𝑔𝛼 𝑚,𝑚′

𝑙
≜

2𝑙 + 1

8𝜋2
𝐹𝑔𝛼 , 𝒟𝑚,𝑚′

𝑙

𝕊𝕆 3
= 𝑓 𝑙

𝑚 𝑔𝛼 𝑙
𝑚′

𝑓 𝑙
𝑚 =

2𝑙 + 1

8𝜋2

𝐹𝑔𝛼 , 𝒟𝑚,𝑚′
𝑙

𝕊𝕆 3

𝑔𝛼 𝑙
𝑚′
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Example: Spatial-Slepian Transform
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A. Aslam, and Z. Khalid, “Spatial-Slepian Transform on 

the Sphere,” IEEE Trans. Signal Process., vol. 69, pp. 

4474-4485, 2021.



Complexity

𝐹𝑔𝛼 𝜌 = 

𝑚,𝑛,𝑘=− 𝐿𝑓−1

𝐿𝑓−1

𝐶𝑚,𝑛,𝑘
𝛼 𝑒𝑖 𝑚𝜑+𝑛𝜗+𝑘𝜔

 𝑂 𝐿𝑓
3𝑙𝑜𝑔2𝐿𝑓

where 

𝐶𝑚,𝑛,𝑘
𝛼 = 𝑖𝑚−𝑛 

𝑙=𝑚𝑎𝑥 𝑚 , 𝑛 , 𝑘

𝐿𝑓−1

𝑓 𝑙
𝑚 𝑔𝛼 𝑙

𝑛𝑑𝑘, 𝑚
𝑙 𝜋/2 𝑑𝑘, 𝑛

𝑙 𝜋/2

 𝑂 𝐿𝑓
4
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Conclusion 

New Approach provide

 Bandlimited and spatially limited Slepian functions on the sphere.

 The first 𝑁𝑅 (spherical Shannon number) concentrated Slepian functions.
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